Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl–glycine, homocysteine and glutathione in plasma and cell extracts

Arin E. Katrusiaka, Phyllis G. Patersonb, Huse Kamencicc, Ahmed Shokerd,e, Andrew W. Lyona,f,g,h,i

aDepartment of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
bCollege of Pharmacy and Nutrition, Saskatoon District Health, Saskatoon, SK, Canada
cDepartment of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
dDepartment of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
eDepartment of Medicine, Saskatoon District Health, Saskatoon, SK, Canada
fDepartment of Laboratory Medicine, Saskatoon District Health, Saskatoon, SK, Canada

Received 19 December 2000; received in revised form 16 March 2001; accepted 16 March 2001

Abstract

A sensitive high-performance liquid chromatographic method for quantification of sulphhydril and disulfide amino acids in human plasma using ultra violet spectrophotometric detection was developed. Precolumn derivatization with 5,5'-dithio-bis-nitrobenzoic acid (DTNB) and an optional pre-derivatization reaction with dithiothreitol allowed both quantitative reduction of disulfides for measurement of total amino acid levels and the measurement of the reduced forms. A dynamic range of 500 nmol/l–750 \(\mu\)mol/l allowed the major analytes of interest to be quantified in plasma without sample dilution. The assay is a sensitive and precise method for the determination of sulphhydril and disulfide amino acids in plasma and cell extracts. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Cysteine; Cysteinyl–glycine; Homocysteine; Glutathione

1. Introduction

Biological compounds containing thiol groups are key reactants of intracellular reductive-oxidative metabolic cycles, substrates for protein synthesis and enzyme cofactors. Analytical methods that quantify sulphhydril amino acids, sulphhydril peptides, drugs and glutathione frequently rely on high-performance liquid chromatography (HPLC) of chemical derivatives to obtain specific, sensitive and precise results. Many recent reports describe the use of HPLC with fluorescence detection of derivatives [1–8] or electrochemical detection of the sulphhydril groups [9–12], however these detectors are not as widely available as ultra violet (UV)–visible models. To allow quantification with conventional UV-spectro-